
MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 1/221L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Lecture 10 – Friday April 5, 2013

Mct/ROB/200 Robotics, Spring Term 12-13

Programming

Some slides of this lecture are based material from the following books:

• J. Rehg. Introduction to Robotics in CIM Systems. 2nd Ed., Prentice-Hall, 1992.

• P. McKerrow. Introduction to Robotics. Addison-Wesley, 1991.

• C. Ray Asfahl. Robots and Manufacturing Automation. 2nd Ed., Wiley, 1992.

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 2/222L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo

Objectives

When you have finished this lecture you should be able to:

• Understand the main requirements and functions of robot

programming.

• Identify different programming methods commonly used with

industrial robots.

• Understand robot language development and different classes

of programming languages.

• Familiarize with ABB RAPID (Robotics Application

Programming Interactive Dialogue) Programming Language.

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 3/223L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo

Outline

• Industrial Robot Programming

• Programming Methods

• Robot Language Development

• ABB RAPID

• Case Study: Inspection System

• Summary

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 4/224L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo

Outline

• Industrial Robot Programming

• Programming Methods

• Robot Language Development

• ABB RAPID

• Case Study: Inspection System

• Summary

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 6/226L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Industrial Robot Programming

Control System

Kinematic Control

Dynamic Control

Operating System

Mechanical System

Mechanical Structures

Transmission

Actuators

Internal Sensors

Work Cell

External Sensors

Task Generation

Work Cell Model

High-level Language

Control

Sensory

information commandsInteraction with

The work cell

• Hardware and Software Structures

Input/Output

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 7/227L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Industrial Robot Programming

• Software Characteristics

◊ Real-time System

◊ Multi-axes System

◊ Necessity for process synchronization

◊ Grand Volume of Mathematical Calculations

◊ Special Purpose Programming Language

◊ High level of Security and Robustness

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 8/228L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Industrial Robot Programming

• Software Processes

◊ High Priority

– Safety Systems

– Emergency Stops

– Simultaneous Controllers of different axis (6 or more): 10-50 sec per

axis

– Operating System

– Command Interpretation

– Path Calculation: 1-5 msec.

– I/O Communications

– Computer Link Communications.

◊ Intermediate Priority

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 9/229L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Industrial Robot Programming

• Software Processes

– Interaction with Programming Unit

– Compiler

– Editor

– Communications with memory disks, diskette, etc.

– Variable Visualization

– Variable Simulation.

◊ Low Priority

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 10/2210L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Production operation is stopped &
programmer puts robot into
programming mode to teach the
required position, motion & control
sequences.

All of the programming is performed away
from the robot & production area;
translation points are calculated by robot
controller from translation point coordinate

values entered in off-line mode; some
touch-up may be required when testing the program in the
operating robot.

Industrial Robot Programming

• Online Programming

• Offline Programming

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 11/2211L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Industrial Robot Programming

• Programming Main Functions

◊ Manipulation

◊ Sensing

◊ Intelligence

◊ Data Processing

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 12/2212L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Industrial Robot Programming

• Programming Main Functions

◊ Manipulation: The

control of the motion of

all robot joints. This

includes position, velocity,

and path control of the arm

during all programmed

motion.

◊ Sensing: The gathering of

information from the physical work

cell surrounding the robot. This include

the collection of sensory information and

the control of peripheral equipment.

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 13/2213L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Industrial Robot Programming

• Programming Main Functions

◊ Intelligence: The ability

to use gathered

information to modify

system operation or to

select various

preprogrammed paths.

◊ Data Processing: The capability to use

data bases and to communicate with

other intelligent machines. This includes

the capability to keep records, exchange

programs, generate reports, and

control activity in the work cell.

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 14/2214L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Industrial Robot Programming

• Software Requirements

◊ Motion Commands

◊ Concurrency

◊ Interprocess Communication

◊ Event Synchronization

◊ Polling or Interrupts

◊ Sensor Variables

◊ Initialization and Termination.

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 15/2215L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Industrial Robot Programming

◊ Motion Commands: The control of motion requires the

addition of move commands to the robot-level language, and

the control of force requires the addition of force commands.

◊ Concurrency:

Parallelism

Low-Level

High-Level

At a low level, the programs must

concurrently control the joint motions

to achieve the desired Cartesian motion of

the end-effector. These control programs

must meet very tight timing constraints.

At a higher level, the robot operates in

parallel with other robots and the

external sensors. Data from these

sensors is required by the robot-level

programs for making decisions.

Concurrency can be achieved in three ways: parallel processing,
multitasking operating systems, and concurrent language
constructs.

• Software Requirements

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 16/2216L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Industrial Robot Programming

◊ Interprocess Communication:

Interprocess or process-process Communication

Shared Memory

An area of memory is set

aside for the storage of

common data. This data

must be accessible by

several processes for both

read and write

operation. This is a

blackboard technique.

Remote-procedure Call Message Passing

Remote-procedure call (RPC) is a

synchronous protocol that a

process A (client) can use to

request a service from process B

(server) on a shared network. This

synchronous operation requires

the requesting process (client) to

be suspended until the results of

the remote procedure are returned.

This is the simplest and

safest model, where

processes send

messages to the other

processes. Process A sends

a message to process B and

pauses until process B

reads and acknowledge the

message.

• Software Requirements

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 17/2217L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Industrial Robot Programming

◊ Event Synchronization: because robots manipulate physical

objects, the programs controlling the robot must be

synchronized with events external to the computer.

These events fall into three categories: initiation events,

termination events and error events.

For example, when command to grasp

an object, the robot program should

check that the object is grasped

before proceeding. If the grasp

action failed, an alternative course

of action must be taken, such as

calling an error recovery routine.

• Software Requirements

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 18/2218L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Industrial Robot Programming

◊ Polling or Interrupts:

Event Detection Methods in Computing

Polling Interrupts

Program continually checks the state

of a sensor input. When certain

predefined conditions occur, the polling

program either sets a flag to indicate

the occurrence of the event, or executes

a procedure to handle the event

When an event occurs, an electrical

pulse causes the processor to halt

execution and vector to an interrupt-

handling routine. As with polling, the

interrupt routine can either set a flag or

execute a procedure to handle the event.

• Software Requirements

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 19/2219L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Industrial Robot Programming

◊ Sensor Variable: Sensor variables are used to store the

values read from sensors. They are like ordinary variables in

that they are used as loop guards in program constructs, for

decision making, and in calculation.

However, they are sufficiently different from ordinary variables

to require special attention in the language. Each sensor

produces an electrical signal which may be a single bit, a binary

number, or an array of binary numbers. Thus, the type of the

sensor variable is determined by the data structure

required to store the sensed information.

• Software Requirements

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 20/2220L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Industrial Robot Programming

◊ Initialization and Termination: To reduce the problem of

initializing a robot, we normally place it in a known home

position.

• Software Requirements

When a robot program terminates:

– It should move the robot to the home

position,

– Apply the brakes,

– and zero all controller outputs by

reducing the gain of the control loops

to zero (suiciding process).

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 21/2221L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Industrial Robot Programming

◊ Initialization and Termination:

When a robot program aborts, a potentially dangerous

situation occurs. Applying the brakes can cause an object to

fly out of the gripper and failure to apply the brakes can

allow the robot to crash into other objects.

• Software Requirements

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 22/2222L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Industrial Robot Programming

◊ Initialization and Termination:

Some commercial robots abort when passing near a

singularity due to the violence of the motion about the

singular point. If such a robot has no brakes, it will collapse

in a heap on the objects it is manipulating.

Watchdog timers to detect when operations have failed are

required for the robot control system.

• Software Requirements

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 23/2223L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo

Outline

• Industrial Robot Programming

• Programming Methods

• Robot Language Development

• ABB RAPID

• Case Study: Inspection System

• Summary

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 24/2224L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Programming Methods

Programming

Methods

Leadthrough

Programming

Textual

Programming

Passive

Active

Direct Passive

Indirect Passive

Task-oriented Languages

Structured Programming Languages

Primitive Motion Languages

Joint Control Languages

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 25/2225L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Programming Methods

• Direct Passive Leadthrough Programming or Teaching

Skilled Operator

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 26/2226L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Programming Methods

Robot is taught by manually seizing the end of the real robot arm

and actually pushing it through the series of operations in a dry

run of the real production process.

The robot can be commanded to repeat the performance

indefinitely.

This type of programming is especially good for spray painting

and welding applications. Operators skilled in conventional spray

painting or welding can teach the robot their skills while

simulating an actual manual performance of the job.

The robot then merely mimics the actions of its teacher.

• Direct Passive Leadthrough Programming or Teaching

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 27/2227L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Programming Methods

• Indirect Passive Leadthrough Teaching

Training Arm or

Dummy Robot

Real Robot

Skilled Operator

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 28/2228L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Programming Methods

This method employs a mechanism that mechanically simulates
the robot: a robot training arm, sometimes called a dummy
robot. Compared with the real robot, the training arm is
generally lighter and easier to manipulate by the skilled operator
charged with the task of teaching the robot.

Spray painting is an ideal application for such mechanisms
because the skilled operator must feel as though he or she is
actually holding a paint gun while teaching the robot.

The comparatively light training arm can give that kind of feel to
the operator. The training arm transmits its path to the control
computer during the teach mode. In turn, the control computer
drives the real robot through the same path of motion in the run
mode.

• Indirect Passive Leadthrough Teaching

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 29/2229L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Programming Methods

• Active Leadthrough Programming

(Teach-pendant Programming)

Programming Unit

Control System

Manipulator

Teach-Pendant or Teach Box

Teach-Pendants have

controls for commanding the

robot to memorize points

along the path motion.

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 30/2230L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Display

Menu Buttons Motion Buttons

Numeric

Keyboard

Delete

Redo

Cursor

Function

Keys

Stop Button

Help MoveI/O

Programming Methods

• Active Leadthrough Programming

(Teach-pendant Programming)

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 31/2231L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Teach pendant

Controller

Emergency button

Mitsubishi RV-2AJ

Programming Methods

• Active Leadthrough Programming

GUC-Festo Lab

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 32/2232L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Programming Methods

• Active Leadthrough Programming

(Teach-pendant Programming)

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 33/2233L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Programming Methods

• Textual Programming

MELFA-BASIC

Programming

language

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 34/2234L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo

Outline

• Industrial Robot Programming

• Programming Methods

• Robot Language Development

• ABB RAPID

• Case Study: Inspection System

• Summary

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 35/2235L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Robot Language Development

Joint Control

Languages
Level 1 BASE CW 20

Task-oriented

Languages
Level 4 Place object 1 on object2 AUTOPASS

Structured

Languages
Level 3

If qmonitor eq 0 then

begin

.

.

else

V, V+, HELP,

KARL, AML,

AML/E, MCL,

DARL II, VAL II,

RAPID, Melfa-

Basic

Primitive Motion

Languages
Level 2

Approach hole, 100

Move hole

RAIL, T3,

RoboTalk, RPL,

VAL

PLCs-

controlled

machines

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 36/2236L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Robot Language Development

◊ Languages at this level
concentrate on the
physical control of
robot motion in terms
of joints or axes.

◊ This level language requires the user to program in joint
space. The term joint space means that all the programmed
points in the robot’s work envelope are expressed as a series
of joint values for all the joints of the arm.

◊ This level is used on some less sophisticated point-to-point
servo machines and on all stop-to-stop pneumatic robot
controlled with PLCs.

• Joint-Control Languages

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 37/2237L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Robot Language Development

• Primitive Motion Languages

◊ A program point is generated by moving the robot to a
desired point and depressing a program switch. A
sequence of points is saved in this manner, producing a
complete program.

◊ Program editing capability is provided.

◊ Teaching motion of the robot is controlled by either a teach
pendant, terminal, or joystick.

◊ The programmed and teaching motion can occur in the
Cartesian, cylindrical, or hand coordinate modes.

Primitive Motion

Languages
Level 2

Approach hole, 100

Move hole

RAIL, T3,

RoboTalk, RPL,

VAL

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 38/2238L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Robot Language Development

• Primitive Motion Languages

◊ Interfacing with work-cell equipment is
possible.

◊ The language permits simple
subroutines and branching.

◊ VAL (Victor Assembly Language) is an
example for this level.

Primitive Motion

Languages
Level 2

Approach hole, 100

Move hole

VAL

PROGRAM DEMO

10 OPENI

20 SPEED 100 MMPS ALWAYS

30 MOVE #A

40 WAIT SIG(1001)

50 SPEED 80 MMPS

60 APPRO B,50

70 MOVES #B

80 BREAK

90 CLOSE

100 SPEED 80 MMPS

110 DEPARTS B,50

120 MOVE D

130 SPEED 80 MMPS

140 APPRO C,50

150 MOVES #C

160 OPENI

170 DEPARTS 50

END

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 39/2239L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Robot Language Development

• Structured Programming Languages

◊ A structured control format is present.

◊ Extensive use of coordinate
transformations and reference
frames is permitted.

◊ Complex data structures are
supported.

Structured

Languages
Level 3

If qmonitor eq 0 then

begin

.

.

else

V, V+, HELP,

KARL, AML,

AML/E, MCL,

DARL II, VAL

II, RAPID,

Melfa-Basic

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 40/2240L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Robot Language Development

• Structured Programming Languages

◊ The format encourages
extensive use of branching
and subroutines defined by
the user.

◊ Off-line programming is
provided.

Structured

Languages
Level 3

If qmonitor eq 0 then

begin

.

.

else

V, V+, HELP,

KARL, AML,

AML/E, MCL,

DARL II, VAL

II, RAPID,

Melfa-Basic

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 41/2241L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Robot Language Development

• Task-oriented Languages

◊ Programming in natural language is permitted. A natural
language command might be “Put bracket A on top of
bracket B”.

◊ A plan generation feature allows replanning of robot motion to
avoid undesirable situations.

◊ A world modeling system permits the robot to keep track of
objects.

Task-oriented

Languages
Level 4 Place object 1 on object2

AUTOPASS

(Automatic

Programming

System for

Mechanical

Assembly)

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 42/2242L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Robot Language Development

• Task-oriented Languages

◊ The inclusion of collision avoidance permits accident-free
motion.

◊ Teaching can be accomplished by showing the robot an
example solution.

Task-oriented

Languages
Level 4 Place object 1 on object2

AUTOPASS

(Automatic

Programming

System for

Mechanical

Assembly)

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 43/2243L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Robot Language Development

Origin Level 2 Level 3 Level 4

ABB RAPID

GMFanuc KARL

Kuka KRL

Cincinnati Milacron T3

Mitsubishi MELFA-BASIC

General Electric HELP

Automatix RAIL

IBM AML, AML/E AUTOPASS

Adept V, V+

McDonnel Douglas MCL

Rhino RoboTalk

Seiko DARL II

Westinhouse RPL

Unimation VAL VAL II

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 45/2245L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Robot Language Development

• Other Classification:

Robot Level
Move P1

Open_gripper

Wait 0.5

Set Input1

. . .

ABB RAPID,

V+, LM, IBM

AML, AL,

VAL II

Object Level
Situate B over C

Situate A inside D

. . .

MIT LAMA,

IBM

AUTOPASS,

RAPT

Task Level Assembly A with D

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 46/2246L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo

Outline

• Industrial Robot Programming

• Programming Methods

• Robot Language Development

• ABB RAPID

• Case Study: Inspection System

• Summary

For Reading

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 47/2247L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

ABB RAPID

System Modules

RAPID Application

Program

Principal Module

Module 1

Module 2

Module 3

Module 4

Program Data

Main Subroutine

Subroutine1

Subroutine2

Subroutine3

Program Data

Subroutine4

Subroutine5

• A RAPID application

consists of a program and

a series of system

modules.

• RAPID (Robotics

Application Programming

Interactive Dialogue) is a

level-3 textual

programming language

developed by ABB.

ASEA Brown Boveri

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 48/2248L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

ABB RAPID

%%%

VERSION:1

LANGUAGE:ENGLISH

%%%

MODULE Module1

declarations

PROC proc1()

. . .

ENDPROC

PROC main()

. . .

. . .

ENDPROC

ENDMODULE

Program

Principal Module

Module1

Module2

Module3

Module4

Program Data

Main Routine

Subroutine1

Subroutine2

Subroutine3

• Program

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 49/2249L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

ABB RAPID

• Program
%%%

VERSION:1

LANGUAGE:ENGLISH

%%%

MODULE Example

CONST robtarget A:=[[0,0,0],[0,0,0,0],[0,-1,0,0], [9E+09,...]]; !Load

CONST tooldata gripper:= [TRUE, [[0,0,0],[1,0,0,0]],

[0,[0,0,0],[1,0,0,0],0,0,0]];

PROC close_gripper()

Set sgripper;

ENDPROC

PROC pick_piece()

MoveJ B1,v100,z5,gripper;

MoveL B,v80,fine,gripper;

close_gripper;

ENDPROC

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 50/2250L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

ABB RAPID

• Program

PROC main()

CONST dionum ready:=1;

open_gripper;

WHILE TRUE DO

MoveJ A,v100,fine,gripper;

WaitDI econtrol,ready;

pick_piece;

MoveL B1,v80,z5,gripper;

MoveJ D,v100,z100,gripper;

MoveJ C1,v100,z5,gripper;

MoveL C,v80,fine,gripper;

open_gripper;

MoveL C1,v80,z5,gripper;

ENDWHILE

ENDPROC

ENDMODULE

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 51/2251L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

ABB RAPID

• Basic Elements

◊ Identifiers:

MODULE module_name

PROCroutine_name()

VAR pos variable_name:

Example:

- The first character must be a letter.

- Maximum length is 16.

- Case sensitive.

- Reserved Words:

AND BACKWARD CASE CONNECT CONST DEFAULT DIV

DO ELSE ELSEIF ENDFOR ENDFUNC ENDIF ENDMODULE

ENDPROC ENDTEST ENDTRAP ENDWHILE ERROR EXIT FALSE

FOR FROM FUNC GOTO IF INOUT LOCAL

MOD MODULE NOSTEPIN NOT OR PERS PROC

RAISE READONLY RETRY RETURN STEP TEST THEN

TO SYSMODULE TRAP TRUE VAR VIEWONLY WHILE

WITH XOR

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 52/2252L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

ABB RAPID

• Basic Elements

◊ Data Types:

String:
“This is a string”

Constants: (CONS)

Variables: (VAR)

Persistent: (PERS) can only be declared at module level, not

inside a routine, and must be given an initial value. The

initialization value must be a single value (without data or

operands), or a single aggregate with members which, in turn,

are single values or single aggregates.

Comments:

! This is a comment

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 53/2253L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

ABB RAPID

• Basic Elements

◊ Data Types:

VAR bool <identifier>:= <valor>

<value>: TRUE / FALSE

<logic expression>

Example:
VAR bool open:=TRUE;

open:=FALSE;

open:= reg1 > 1;

Example: VAR num flow := 0;

flow := 2.34;

Example: VAR string text;

text:= “Start moving”;

Valid values: 5 0.37 0.1E-5 -12.34

Numeric value: num

Boolean value (True/False): bool

String: string

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 54/2254L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

ABB RAPID

• Basic Elements

◊ Data Types:

Example:

Coordinate system of object A

Coordinate system of object B

Work-cell Coordinate system

User coordinate system

TCP coordinate system

Wrist coordinate system

VAR pos position1;

position1 := [500, 0, 940];

position1.x := position1.x + 50;

pos: a register represents only the position X, Y y Z in mm.

x is a numeric variable.

y is a numeric variable.

z is a numeric variable.

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 55/2255L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

ABB RAPID

• Basic Elements

◊ Data Types:

Example:

VAR pose pos1;

pos1 := [[500, 100, 800],[1,0,0,0]];

pos1.trans := [650, -230, 1230];

pos1.trans.y := -23.54;

orient: a register to save the orientation (q1, q2, q3, q4,q5,q6).

pose: a register for both position and orientation.

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 56/2256L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

ABB RAPID

• Basic Elements

◊ Data Types:

Example:

cf1: the current quadrant of axis 1,

cf4: the current quadrant of axis 4,

cf6: the current quadrant of axis 6,

VAR confdata conf10:=[1,-1,0]

confdata: is used to define the axis configurations of the robot

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 60/2260L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

ABB RAPID

• Basic Elements

◊ Data Types:

mass: weight in kg.

cog: centre of gravity of the load.

aom: The orientation of the axes of moment of the load at the centre of

gravity.

ix,iy,iz: The moment of inertia of the load around x, y, z in kgm2.

Example: VAR loaddata piece:=[5,[50,0,50],[1,0,0,0],0,0,0];

loaddata: is used to describe loads attached to the mechanical interface of

the robot (the robot’s mounting flange).

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 61/2261L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

ABB RAPID

• Basic Elements

◊ Data Types:

robhold : bool to show of the tool is fixed or not.

tframe : Coordinate system of the tool

TCP Position (x,y,z)

Orientation. (q1,q2,q3,q4)

tload: load of the tool

Example: PERS tooldata gripper:=[TRUE,[[97,0,220],

[0.924,0,0.383,0]],5,[-23,0,75],[1,0,0,0],0,0,0]]

tooldata: is used to describe the characteristics of a tool, e.g. a welding

gun or a gripper.

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 62/2262L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

ABB RAPID

• Basic Elements

◊ Modules:

Declaration:

MODULE <module_name> [<List of attributes>]

<Declaration>

<Routine Declaration>

ENDMODULE

[<List of attributes>]:

SYSMODULE

NOSTEPIN

VIEWONLY

READONLY

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 63/2263L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

ABB RAPID

• Basic Elements

◊ Motion Commands:

MoveL p1, v100, z10, tool1

Velocity

Destination

TCP Tool

MoveL p1, v200, z10, tool1

MoveL p2, v100, fine, tool1

MoveJ p3, v500, fine, tool1

p

p1

p2

p3

Path Type

L: Line

J : Axis to Axis

C : Circular
Zone Size

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 64/2264L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

ABB RAPID

• Basic Elements

◊ Motion Commands:

MoveL Offs (p1, 100, 50, 0), v100, z10, tool1

Initial point

Displacement x Displacement z

Displacement y

MoveL p1, v200, fine, tool1

MoveL Offs (p1, 100, 0, 0), v100, fine, tool1

MoveL Offs (p1, 100, 50, 0), v100, fine, tool1

MoveL Offs (p1, 0, 50, 0), v100, fine, tool1

MoveL p1, v100, fine, tool1

p4

p1 p2

p3

100 mm.

50 mm.

More information: ABB RAPID Reference On-line Manual

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 65/2265L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

ABB Deskware

RAPID SyntaxChecker

• ABB

ABB RAPID

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 66/2266L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

• FESTO COSIMIR ®

ABB RAPID

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 67/2267L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo

Outline

• Industrial Robot Programming

• Programming Methods

• Robot Language Development

• ABB RAPID

• Case Study: Inspection System

• Summary

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 68/2268L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Case Study: Inspection System

1. The robot waits until receiving

a signal from the presence

sensor, which indicates the

existence of a workpiece over

the conveyer belt.

2. The robot stops the conveyer

belt and picks the defected piece

and deposits it in the waste box.

3. The robot reactivates the movement of the conveyer belt after depositing

the defected piece.

4. After the operation, the robot returns to its initial position and the cycle

repeats itself again.

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 69/2269L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Case Study: Inspection System

• Variable Declaration

tool: a tooldata variable, which represents the gripper of the robot.

piece: a loaddata variable to define the piece to be manipulated.

PERS tooldata tool:=[TRUE,[[97,0,223],

[0.924,0,0,0.383,0]],[5,[-23,0,75],[1,0,0,0],0,0,0]]

PERS loaddata piece:=[5,[50,0,50],[1,0,0,0],0,0,0];

VAR robtarget conf_wait:=[[600,500,225],[1,0,0,0],[1,0,0,0],

[9E9,9E9,9E9,9E9,9E9,9E9]];

conf_wait: a robtarget variable, which defines axis configurations of the

robot in the waiting position.

VAR signaldo gripper !activation signal of the gripper

VAR signaldo activate_belt !activation signal of the conveyer belt

VAR signaldi defected_piece !signal of defected piece

VAR signaldi finish !signal to end the program

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 70/2270L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Case Study: Inspection System

• Gripper Control Subroutines

PROC pick()

Set gripper !close gripper

WaitTime 0.3 !Wait 0.3 seconds

GripLoad piece !Indicating that the piece is picked

ENDPROC

PROC place()

Reset gripper !Open gripper

WaitTime 0.3 !Wait 0.3 seconds

GripLoad LOAD0 !Indicating that there is no piece

ENDPROC

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 71/2271L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Case Study: Inspection System

• Pick Subroutines

PROC pick_piece()

MOVEJ *,VMAX,z60,tool !move the robot quickly to a certain point

MOVEL *,V500,z20,tool !move the robot in straight line

MOVEL *,V150,FINE,tool !go down with maximum resolution

pick !pick the piece

MOVEL *,V200,z20,tool !go up with piece taken

ENDPROC

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 72/2272L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Case Study: Inspection System

• Place Subroutines

PROC place_piece()

MOVEJ *,VMAX,z30,tool !Move to the waste box

MOVEJ *,V300,z30,tool

place !place the piece

ENDPROC

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 73/2273L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Case Study: Inspection System

• Go to Waiting Position Subroutine

PROC go_wait_position()

MOVEJ conf_wait,VMAX,z30,tool !Move to the initial position

ENDPROC

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 74/2274L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Case Study: Inspection System

• Main Program

PROC main()

go_wait_position; !Move to initial position

WHILE Dinput(finish)=0 Do !wait end program signal

IF Dinput(defected_piece)=1 THEN !Wait defected piece signal

SetDO activate_belt,0; !Stop belt

pick_piece !Pick the defected piece

SetDO activate_belt,1; !Activate the belt

place_piece !Place the defected piece

go_wait_position; !Move to the initial position

ENDIF

ENDWHILE

ENDPROC

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 75/2275L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo

Outline

• Industrial Robot Programming

• Programming Methods

• Robot Language Development

• ABB RAPID

• Case Study: Inspection System

• Summary

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 76/2276L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Summary

• Industrial Robot is a reprogrammable multifunctional

manipulator designed to move material, parts, tools or

specialized devices through variable programmed motions for

the performance of a variety of tasks. A key feature of robots is

their capability for being reprogrammed for different tasks.

• Robot programming places special requirements on

computer languages and systems.

• In addition to the data manipulation handled by normal

programs, robot programs have to control motion, operate in

parallel, communicate with programs which may be in other

computers, synchronize with external events, respond to

interrupts in real time, operate on sensor variables, and

initialize and terminate in physically safe ways.

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 77/2277L10, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

End of the course

Best wishes!

