

Mct/ROB/200 Robotics, Spring Term 12-13

Lecture 4 – Friday March 15, 2012

Forward Kinematics

Objectives

When you have finished this lecture you should be able to:

• Learn how to derive the forward kinematic equations of the robot using Denavit-Hartenberg (D-H) representation technique.

Outline

- Forward Kinematics
- Denavit-Hartenberg Algorithm
- Summary

Outline

Forward Kinematics

- Denavit-Hartenberg Algorithm
- Summary

Forward Kinematics

Given: The angle of each joint **Required:** The position of end-effector or any point (i.e. its coordinates) $(p_x,p_y,p_z,\phi,\theta,\psi)$

Forward Kinematics

L4, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Required:

$$p_{x}=f_{x} (\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6})$$

$$p_{y}=f_{y} (\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6})$$

$$p_{z}=f_{z} (\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6})$$

$$\phi=f_{\phi} (\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6})$$

$$\theta=f_{\theta} (\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6})$$

$$\psi=f_{\psi} (\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6})$$

Cartesian Space

Forward Kinematics

• A Plan Arm with 2-DOF Given: θ_1, θ_2

Required: x, y

Solution:

Trigonometric Solution

 $\begin{aligned} x = l_1 \cdot \cos\theta_1 + l_2 \cos(\theta_1 + \theta_2) \\ y = l_1 \cdot \sin\theta_1 + l_2 \sin(\theta_1 + \theta_2) \end{aligned}$

See Trigonometric Solution.xls

Algebraic Solution

$${}^{0}T_{2} = {}^{0}T_{1} {}^{1}T_{2}$$

Forward Kinematics

- A Plan Robot with 3-DOF
- **Given:** $\theta_1, \theta_2, \theta_3, l_1, l_2, l_3$
- Required: x, y

Solution:

Outline

• Forward Kinematics

Denavit-Hartenberg Algorithm

• Summary

Analyzing the robot morphology

Axis of motion is in the direction of rotation as followed by the righthand rule for rotations.

Prismatic Joint 1 DOF (linear) (Variable - d)

Axis of motion is along the direction of the linear movement.

Analyzing the robot morphology

D-H 1: Give a number for each joint from 1 to N starting with the base and ending with the tool yaw, pitch, and roll, in that order

Establishing Coordinate Systems

Establishing Coordinate Systems

Establishing Coordinate Systems

 Z_{U}

Establishing Coordinate Systems

 Z_{U}

Establishing Coordinate Systems

 Z_{U}

Calculate D-H Parameters

Calculate D-H Parameters

Calculate D-H Parameters

di

make X_{i-1} and X_i aligned

Η

 θ_4

 1_{4}

L4, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

Calculate D-H Parameters

Calculate D-H Parameters

Calculate D-H Parameters

Η

 θ_4

 l_{Δ}

Rx

 α_i

0

-90°

0

0

0

D-H Transformation Matrix

D-H Transformation Matrix for adjacent coordinates frames, i and i-1

$${}^{i-1}A_i = \begin{bmatrix} C\theta_i & -C\alpha_i S\theta_i & S\alpha_i S\theta_i & a_i C\theta_i \\ S\theta_i & C\alpha_i C\theta_i & -S\alpha_i C\theta_i & a_i S\theta_i \\ 0 & S\alpha_i & C\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{z_{n-1}} {}^{z_{n-1}} \xrightarrow{\theta_{n+1}} \xrightarrow{z_{n+1}} {}^{z_{n+1}} \xrightarrow{y_{n+1}} \xrightarrow{y_{n+1}} {}^{z_{n+1}} \xrightarrow{z_{n+1}} \xrightarrow{y_{n+1}} \xrightarrow{y_{n+1}} \xrightarrow{z_{n+1}} \xrightarrow{z_{n+1}} \xrightarrow{y_{n+1}} \xrightarrow{z_{n+1}} \xrightarrow{z_$$

Total Transformation between the base of the robot and the hand is:

$${}^{R}T_{H} = {}^{O}A_{n} = {}^{O}A_{1} \cdot {}^{1}A_{2} \cdot {}^{2}A_{3} \cdot \dots \cdot {}^{(n-1)}A_{n}$$

• D-H Transformation Matrix

Partial Matrices

$${}^{i-1}A_{i} = \begin{bmatrix} C\theta_{i} & -C\alpha_{i}S\theta_{i} & S\alpha_{i}S\theta_{i} & a_{i}C\theta_{i} \\ S\theta_{i} & C\alpha_{i}C\theta_{i} & -S\alpha_{i}C\theta_{i} & a_{i}S\theta_{i} \\ 0 & S\alpha_{i} & C\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

RzTzTxRxi θ_i d_i a_i α_i 1 θ_1 1_1 00

 d_2

 d_3

 l_{4}

0

0

0

90°

0

 θ_{4}

2

3

Η

$${}^{0}A_{1} = \begin{bmatrix} C\theta_{1} & -S\theta_{1} & 0 & 0 \\ S\theta_{1} & C\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{1}A_{2} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

-90°

0

0

• D-H Transformation Matrix

Partial Matrices

$${}^{i-1}A_{i} = \begin{bmatrix} C\theta_{i} & -C\alpha_{i}S\theta_{i} & S\alpha_{i}S\theta_{i} & a_{i}C\theta_{i} \\ S\theta_{i} & C\alpha_{i}C\theta_{i} & -S\alpha_{i}C\theta_{i} & a_{i}S\theta_{i} \\ 0 & S\alpha_{i} & C\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

	Rz	Tz	Tx	Rx
i	θ_{i}	d _i	a _i	α_{i}
1	θ_1	l_1	0	0
2	90°	d_2	0	-90°
3	0	d ₃	0	0
Η	θ_4	l_4	0	0

$${}^{2}A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{3}A_{H} = \begin{bmatrix} C\theta_{4} & -S\theta_{4} & 0 & 0 \\ S\theta_{4} & C\theta_{4} & 0 & 0 \\ 0 & 0 & 1 & l_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• D-H Transformation Matrix

Total Transformation Matrix

 ${}^{R}T_{H} = {}^{0}A_{4} = {}^{0}A_{1} \cdot {}^{1}A_{2} \cdot {}^{2}A_{3} \cdot {}^{3}A_{4}$

$${}^{R}T_{H} = {}^{0}A_{H} = \begin{bmatrix} -S_{1}C_{4} & S_{1}S_{4} & C_{1} & C_{1}(d_{3}+l_{4}) \\ C_{1}C_{4} & -C_{1}S_{4} & S_{1} & S_{1}(d_{3}+l_{4}) \\ S_{4} & C_{4} & 0 & d_{2}+l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• ABB IRB 1400

ABB IRB 1400

• ABB IRB 1400

For this ABB IRB 1400 robot:

- Assign the coordinate frames based on the D-H representation;
- Fill out the parameters table;
- Write all the A matrices;
- Write the total transformation matrix in terms of the A matrices.

ABB IRB 1400: Frame Assignment

Assigning Frame-0:

The given first frame will be considered as the base frame.

 Z_o is the axis of actuation for joint 1. Its direction will be as shown in the figure.

We may choose the origin O_o of the base frame to be any point on Z_o .

We then choose X_o (and Y_o if you want) in any convenient manner as long as the resulting frame is right-handed. In this problem, the direction of X_o is already given. This sets up frame 0.

ABB IRB 1400: Frame Assignment

Assigning Frame-1:

 Z_1 is the axis of actuation for joint 2. Its direction will be as shown in the figure.

 Z_1 and Z_0 are parallel. In this case, there are infinitely many common normals between them. In this case we are free to choose the **origin O**₁ **anywhere along Z**₁. One often chooses O₁ to simplify the resulting equations.

ABB IRB 1400: Frame Assignment

Assigning Frame-1:

The axis X_1 is then chosen either to be **directed from O**₁ toward Z_0 , along the common normal, or as the **opposite** of this vector.

A common method for choosing O_1 is to choose the normal that passes through O_0 as the X_1 axis; O_1 is then the point at which this normal intersects Z_1 . Following these rules, O_1 and X_1 are chosen as shown in the figure. This sets up frame 1.

ABB IRB 1400: Frame Assignment

Assigning Frame-2:

 Z_2 is the axis of actuation for joint 3. Its direction will be as shown in the figure.

 Z_2 and Z_1 are parallel. In this case, there are infinitely many common normals between them. In this case we are free to choose the origin O_2 anywhere along Z_2 . One often chooses O_2 to simplify the resulting equations.

ABB IRB 1400: Frame Assignment

Assigning Frame-2:

The axis X_2 is then chosen either to be directed from O_2 toward Z_1 , along the common normal, or as the opposite of this vector.

A common method for choosing O_2 is to choose the normal that passes through O_1 as the X_2 axis; O_2 is then the point at which this normal intersects Z_2 . Following these rules, O_2 and X_2 are chosen as shown in the figure. This sets up frame 2.

ABB IRB 1400: Frame Assignment

Assigning Frame-3:

 Z_3 is the axis of actuation for joint 4. Its direction will be as shown in the figure.

 Z_3 and Z_2 are parallel. In this case, there are infinitely many common normals between them. In this case we are free to choose the **origin** O_3 **anywhere along** Z_3 . One often chooses O_3 to simplify the resulting equations.

ABB IRB 1400: Frame Assignment

Assigning Frame-3:

The axis X_3 is then chosen either to be directed from O_3 toward Z_2 , along the common normal, or as the opposite of this vector.

A common method for choosing O_3 is to choose the normal that passes through O_2 as the X_3 axis; O_3 is then the point at which this normal intersects Z_3 . Following these rules, O_3 and X_3 are chosen as shown in the figure. This sets up frame 3.

ABB IRB 1400: Frame Assignment

Assigning Frame-4:

 Z_4 is the axis of actuation for joint 5. Its direction will be as shown in the figure.

Z₄ and **Z**₃ intersect. In this case, X_4 is chosen normal to the plane formed by Z_4 and Z_3 . The positive direction of X_4 is arbitrary.

The most natural choice for the origin O_4 in this case is at the point of intersection ¹ of Z_4 and Z_3 . However, any convenient point along the axis Z_4 suffices. This sets up frame 4.

l₁

ABB IRB 1400: Frame Assignment

Assigning Frame-5:

 Z_5 is the axis of actuation for joint 6. Its direction will be as shown in the figure.

 Z_5 and Z_4 intersect. In this case, X_5 is chosen normal to the plane formed by Z_5 and Z_4 . The positive direction of X_5 is arbitrary.

h

ABB IRB 1400: Frame Assignment

Assigning Frame-5:

The most natural choice for the origin O_5 in this case is at the point of intersection of Z_5 and Z_4 . However, any convenient point along the axis Z_5 suffices. This sets up frame 5.

ABB IRB 1400: Frame Assignment

ABB IRB 1400: Frame Assignment

D-H 6: Locate point b_i at the intersection of X_i and Z_{i-1} axes. If they do not intersect, use the intersection of X_i with a common normal between X_i and Z_{i-1} .

 \mathbb{Z}_5

 \mathbf{b}_1

• ABB IRB 1400: D-H Parameter Table

L4, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis

 α_{i}

ABB IRB 1400: Partial/Adjacent Matrices

$${}^{i-1}A_{i} = \begin{bmatrix} C\theta_{i} & -C\alpha_{i}S\theta_{i} & S\alpha_{i}S\theta_{i} & a_{i}C\theta_{i} \\ S\theta_{i} & C\alpha_{i}C\theta_{i} & -S\alpha_{i}C\theta_{i} & a_{i}S\theta_{i} \\ 0 & S\alpha_{i} & C\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}A_{1} = \begin{bmatrix} C_{1} & 0 & S_{1} & l_{2}C_{1} \\ S_{1} & 0 & -C_{1} & l_{2}S_{1} \\ 0 & 1 & 0 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{1}A_{2} = \begin{bmatrix} C_{2} & -S_{2} & 0 & l_{3}C_{2} \\ S_{2} & C_{2} & 0 & l_{3}S_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

ABB IRB 1400: Partial/Adjacent Matrices

$${}^{4}\mathbf{A}_{5} = \begin{bmatrix} \mathbf{C}_{5} & \mathbf{0} & \mathbf{S}_{5} & \mathbf{0} \\ \mathbf{S}_{5} & \mathbf{0} & -\mathbf{C}_{5} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} {}^{2}\mathbf{A}_{3} = \begin{bmatrix} \mathbf{C}_{3} & \mathbf{0} & \mathbf{S}_{3} & \mathbf{1}_{4}\mathbf{C}_{3} \\ \mathbf{S}_{3} & \mathbf{0} & -\mathbf{C}_{3} & \mathbf{1}_{4}\mathbf{S}_{3} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}$$

$${}^{3}\mathbf{A}_{4} = \begin{bmatrix} \mathbf{C}_{4} & -\mathbf{S}_{4} & \mathbf{0} & \mathbf{0} \\ \mathbf{S}_{4} & \mathbf{0} & \mathbf{C}_{4} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} & \mathbf{0} & \mathbf{1}_{5} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} {}^{5}\mathbf{A}_{6} = \begin{bmatrix} \mathbf{C}_{6} & -\mathbf{S}_{6} & \mathbf{0} & \mathbf{0} \\ \mathbf{S}_{6} & \mathbf{C}_{6} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1}_{6} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}$$

ABB IRB 1400: Total Transformation Matrix

ABB IRB 1400: Forward Kinematics Solution

Given:

 $\begin{array}{c} \theta_2 \\ \theta_3 \\ \theta_4 \\ \theta_5 \end{array}$

θ

 θ_6

 Point
 Required:

 Forward Kinematics

 $p_{x}=f_{x} (\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6})$ $p_{y}=f_{y} (\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6})$ $p_{z}=f_{z} (\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6})$ $n=f_{n} (\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6})$ $o=f_{o} (\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6})$ $a=f_{a} (\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6})$

$${}^{0}A_{6} = \begin{bmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{x} & a_{x} & p_{y} \\ n_{z} & o_{x} & a_{x} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Outline

- Forward Kinematics
- Denavit-Hartenberg Algorithm
- <u>Summary</u>

Summary

- The Denavit-Hartenberg Representation has become the standard way of representing robots and modelling their motions. The method begins with a systematic approach to assigning and labelling an orthonormal (x,y,z) coordinate system to each robot joint. It is then possible to relate one joint to the next and ultimately to assemble a complete representation of a robot's geometry.
- In assigning the x- and z-axes, you may choose either direction along the chosen line of action. Ultimately, the result of the total transformation will be the same. However, your individual matrices and parameters are similarly affected.
- It is acceptable to use additional frames to make things easier to follow. However, you may not have any fewer or more unknown variables than you have joints.

Summary

- We can assign coordinate frames to all joints, with the following exceptions:
 - If two z-axes are parallel, there are an infinite number of common normals between them. We will pick the common normal that is colinear with the common normal of the previous joint. This will simplify the model.
 - If the z-axes of two successive joints are intersecting, there is no common normal between them (or it has a zero length). We will assign the x-axis along a line perpendicular to the plane formed by the two axes. This means that the common normal is a line perpendicular to the plane containing the two z-axes, which is the equivalent of picking the direction of the cross-product of the two z-axes. This also simplifies the model.

Summary

- The fundamental problem of D-H representation is that since all motions are about the x- and z-axes, the method cannot represent any motion about the y-axis.
- Therefore, if there is any motion about the y-axis, the method will fail. This occurs in a number of circumstances. For example, suppose two joint axes that are supposed to be parallel are assembled with a slight deviation. The small angle between the two axes will require a motion about the y-axis. Since all real industrial robots have some degree of inaccuracy in their manufacture, their inaccuracy cannot be modeled with the D-H representation.