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Lecture 4 — Friday March 15, 2012

Inverse Kinematics

These slides are based on materials from the following books:
« Saeed Benjamin Niku. Introduction to Robotics. 2™ Ed., Wiley, 2011.

« Mark W. Spong, Seth Hutchinson, and M. Vidyasagar. Robot Dynamics and Control. 2004.
 P. Mckerrow. Introduction to Robotics. 15t Ed., Addison-Wesley, 1991.




___________________________________________________________________
Objectives
When you have finished this lecture you should be able to:

« Learn how to derive the inverse kinematic equations of the
robot.

e Understand how to decouple the inverse kinematics problem
into two simpler problems, known respectively, as inverse
position kinematics, and inverse orientation kinematics.
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Inverse Kinematics

Inverse Kinematics

Given: The position of some point on
the robot

Required: The angles of each joint
needed to obtain that position
(0,,0,,0,,0,,0.,0¢)

. Required:
Given:

X1 y1 Z!d)le’\lj eszk (X’y’z’(l)’e’\l")

K=1,....n (nis DOF = 6)




Inverse Kinematics

Example:

Given:

The desired position and orientation

of the final frame:

I nX OX a'X
n 0O, a
RTH _ y X X
nZ OX a'X
0 0 O
Required:

Py
Py
P,
1

Stanford Arm

Find the corresponding joint variables 0,, 6,, d., 0, 6., and 0




Inverse Kinematics

Example (cont’d):

Solution: To find the corresponding joint variables, we must solve
the following simultaneous set of nonlinear trigonometric

equations:

e = C1[Ca(C3CsCo — S4S5) — 8285Cs) — S1(S5C5C + CaSe)

n, = 8| Co(C3C5Cq — S386) — $285C¢) + C1(S4C5Cq + C4S)

n. = —S2(CsC5Ce — S485) — C285C

or = Ci[—Ca(CsC586 + SsCs) + S28586] — S1(—84C586 + C4Cs)
0, = S1[—Ca(C4CsSs + S5Cs) + $25556] + Ci(—S,C5S6 + C4Cs)
0: = S$2(CyCs586 + S4Cp) + Ca2S5Sq
ay = C1(C2C4Ss + S2Cs) — 81845
a, = S§1(CrC4Ss5 + $,C5) + C18485
4. = —$,CyS: 4+ CrCs

p, = Ci18ad; — Sid>

P, = $518:dy + Cqd>

!Uz = Cg(fa




]
Inverse Kinematics

« The equations in the preceding example are, of course, much
too difficult to solve directly in closed form. This is the case
for most robot arms.

« Therefore, we need to develop efficient and systematic
techniques that exploit the particular kinematic structure of the
manipulator.

« Whereas the forward kinematics problem always has a
unique solution that can be obtained simply by evaluating the
forward equations, the inverse kinematics problem may or
may not have a solution. Even if a solution exists, it may or
may not be unique.
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Inverse Kinematics

Inverse Kinematics

Solutions

Trigonometric Algebraic
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Trigonometric Solutions
* 2-DOF Arm

Given: x,y

Required: 0, S

Solution:

eztan‘1(¥) S=\/(X2+ y?)

See Trigonometric Solution.xls posted on the course website




Trigonometric Solutions
« 2-DOF Revolute Arm

Given: x,y, L, L,
Required: 0, 0,

Solution:
9, = cos| XY = )
: 211,

Redundant because 60, can take positive or
negative values

0, =sin™ 2 SIn(0,) +tan‘1(xj
X2+ Y X

Redundant because 6, has two possible
values

[T
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Algebraic Solutions
« 3-DOF Polar Robot




Algebraic Solutions
« 3-DOF Polar Robot

Solution: ,

Table of D-H Parameters
Rz Tz Tx RX

i 0 d, a; Q.
1 N l, 0 | 90°
2 d, 0 0 | -90°
3 0 O3 0 0




Algebraic Solutions

« 3-DOF Polar Robot
—-Ca,SO

ca
SO,

i—lA1 —

|—\m HO

o O

C.C,
5.C,
S,

0

o O O

Ca,CO,

Sy
— Cl
0
0

— Sl
C,
0
0

Sa.S0  aCeo’
~Sa,CH 56

Ca, d.

0 1
0] C, 0
0|, S, O
., A=l o
1) 0 0
-CS, 0
-SS, 0 T=p,
C, |

0 1

i G d, a; Qo
1 d; l, 0 90°
2 d, 0 0 | -90°
3 0 3 0 0
(1 0 0 O]
, 010 0
%= 0 1 q
000 1
_Sl Clsz o q3C182 ]
C1 N Sls 2 _qsslsz
0 C, 0q,C, +l,;
0 0 1 ]




Algebraic Solutions
« 3-DOF Polar Robot

OT3:0A11A2.2A3 ||~ OT3=




Algebraic Solutions
« 3-DOF Polar Robot

=AAA 1y T=

n o a p
0001}




Algebraic Solutions
« 3-DOF Polar Robot

T=A ARy In—p AT Al AR

Premultiply by
Al—l
-1.7=A_.
AT T=A A
— - — - Note: ONLY for homogenous
Cl O Sl 0 . Cl Sl 0 0 transformation matricegs
A 5 0 -C, 0f |0 0 1 -l A:B H
01 0 | S, -C, 0 R
1 X(—
00 0 1/ |0 0 0 1 A{Ol}




Algebraic Solutions
« 3-DOF Polar Robot

AT T=Ay A
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Algebraic Solutions

« 3-DOF Polar Robot

c, s, 0 ofn, o, a p.][C, 0 -S, -Sq,
0 0 1 - \|1 ny oy ay oy S, 0 C, (32:9;’»
S, —-C, 0 O'ln o a 'p 0O -1 O 0 ;
__________________________ yA VA Z ' Z:
0 0 0 1j0 0 0 1] |0 0 0 1

From these 12 relations, take those express q, as function of
constants,

which is element (3,4).

5,p=C.p, =0 Il taﬂ(ql):% I— q1=tanl(&j




Algebraic Solutions
« 3-DOF Polar Robot

A1‘1°T=A2-A3 | > Az—l-Al—l-TzAZ—l.AZ.A3

Premultiply by —
~ l
Az_l.Al_l.T:As
cC, 0 -S, 0" [c, S, 0 O
A= s, 0 C, 0f] |0 0 -10
lo -1 0o 1| |-s, Cc, 0 O
0o 0 0 1] |0 o0 0 1




L |
O O +H O
| |
©O +H O O O O F -
e Q9 o o 4o
Il
_ _ O +H O O
X > N4
o o QO — O O O
X > N I
S o «© < _ |
X 2> N4
o o o
X > N o
O o O

el <
| ]
X > N
[ _ o
o O
© T o o ©
X > N
© +H O O e = © _
Cl _2 Il !
i
o Yo No G«
_ _
J © »n O
_ L N O ) ©
| 1
©O O O -
— 3 n
o | o o 32C1 “ o
) 7p)
_
»n © O ©
i
11_C
OePe o

Algebraic Solutions
« 3-DOF Polar Robot

,A‘z—fl..pi—l.T:,A\3
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Algebraic Solutions

« 3-DOF Polar Robot

cC, CS S, -1Sn, o, a p] 1000
s, ¢ n o a 'p
s, G, 0 0 |n o a p| 010 0
S,C, -S,S, C, -C|J n, o, a : OZ"; 0 0 1 q,
0 0 0 1 ]Jo0o 0 0 1] (000 1

— ~N_7 —

Considering the element (1,4), we arrive at:
C,C.p, +C,5.p, +5,p, - 1S, =0

l

C.p, +S
C,(C.p,+5,p,)+S -0 mmp tan(q,) = 1(';’X pl)pv
1 Mz
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Algebraic Solutions

« 3-DOF Polar Robot
C.p,+35.p,

(l,—p,)

Considering that (see page 23): S,p, —C,p, =0
(5P, —C.P,)*=5,"p," ~C,"p,” ~25,C,p,p, =0
(1-C/)p; +(—=S/)py =2S,C,p,p, inmummmpp Note:

(sin6)2=sinBsin0=[1-(cos0)?]

C12 pf + 812 pj + 281(:1 P, py = pf + p; (cos0)2=cosOcosf=[1-(sin6)2]

tan(qz) —

C, Py +S. P, =4/ P2+ P’
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Algebraic Solutions

« 3-DOF Polar Robot

,A‘z—l.,al—l.'r:A3

— \ —

'CC, CsS s, -Is,n, o a b, 100 O
_ n o a_ p.

S b 00 0Ny 0y Y| = 010 O
=56 -85, G -Glifn o, a p | |00 170
0 0 0 1 Jo o o0 1] 000 1

Taking the element (3,4), we arrive at:
—5,C, P, — 5,9, Py + C,p,-1C, =0,

L]

C,(p,—1)-S,(C,p, +Slpy) =03 |I~ 0; :Cz(pz _|1)_Sz\/px2 T py2




-
Algebraic Solutions

- 3-DOF Polar Robot

Z

Inverse Kinematics Solution
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Algebraic Solutions

 Inverse Kinematic Heuristic

1.

Equate the total transformation matrix to the manipulator
matrix that describes the desired position and orientation
of the final frame.

Look at both matrices for:
a) Elements which contain only one joint variable;

b) Pairs of elements which will produce an expression in
only one joint variable when divided. In particular look
for divisions that result in the atan2 function;

c) Elements, or combinations of elements, that can be
simplified using trigonometric identities.
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Algebraic Solutions

 Inverse Kinematic Heuristic

3. Having selected an element, equate it to the corresponding
element in the other matrix to produce an equation. Solve
this equation to find a description of one joint variable in
terms of the elements of the general transformation matrix.

4. Repeat step 3 until all the elements identified in step 2 have
been used.

5. If any of these solutions suffer from inaccuracies, undefined
results, or redundant results, set them aside and look for
better solutions.
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Algebraic Solutions

 Inverse Kinematic Heuristic

6. If there are more joint angles to be found, premultiply both
sides of the matrix equation by the inverse of the adjacent
matrix A for the first link to produce a new set of equivalent
matrix elements. Alternatively, you can postmultiply both
sides by the inverse of the matrix A for the last link in the
manipulator, if you think doing so will lead to simpler
results.

7. Repeat Steps 2 to 6 until either solutions to all the joint
variables have been found, or you have run out of A
matrices to premultiply (or postmultiply).
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Algebraic Solutions

 Inverse Kinematic Heuristic

8. If suitable solution cannot be found for a joint variable,
choose one of those discarded in step 5, taking note of
regions where problems may occur.

9. If a solution cannot be found for a joint variable in terms of
the elements of the manipulator transform, it may be that
the manipulator cannot achieve the specified position and
orientation: the position is outside the manipulator’s
workspace. Also, theoretical solutions may not be physically
attainable because of mechanical limits on the range of joint
variable.
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Kinematic Decoupling

Alabeo (Roll) Cabeceo (Pitch)

« 6-DOF Polar Robot
Kinematic ) }
decou lin Guiiiada (&*}* N
PInE L
TCP

(Tool Center Point)




Kinematic Decoupling
 Cylindrical Manipulator with Spherical Wrist




Kinematic Decoupling
» Three-Link Cylindrical Robot

Table of D-H Parameters

Rz Tz Tx RX
i 0, d; a o4
1 0, | d, 0 0
2 0 d, 0 |-90°
3 0 d, 0 0




Kinematic Decoupling
» Three-Link Cylindrical Robot

C, =S, 0 0
S, C, 0 0
Ao o 1 d,
0 0 0 1]
1 0 0 0]
oo 10
AZ_0—10dz
0 0 0 1]
100 0
_lo10 o0
%=1 0 1
000 1




Kinematic Decoupling

» Three-Link Cylindrical Robot

C, 0 -S Sd,
s, 0 C  Cd,
0 -1 0 d;+d,
0O 0 O 1

OA3:OA11A22A3 _
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Kinematic Decoupling

e Spherical Wrist r g 9
. | O 76
The joint axes z,, z,, z, ST AT
1ntersect at P.,. 5 ‘¢ To gripper
C, 0 -S, O
ip |8 0 GO
0O -1 0 O
0 0 0 1
_C5 0 S, 07 I::'able o_fr D-H P_T_rameti\:s
n S. 0 -C. 0 - Z Z X X
0 0 0 1] 4 o, | 0| 0 |-90°
C; —S; 0 0] 5 | 6 | 0 | 0 | 90
S, C, 0 0
55 _| V6 6 6 0 d 0 0
A=lo 0 14 i
0 0 0 1]
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Kinematic Decoupling

» Spherical Wrist

i
I A -

\» To gTipper

c,Cc.C.-S,S, -C,C.C.-S,C, C,S. C,S.d,]

3,C.C.+C,S; -S,C.5.+C,C. S,S. S,S.d,
~S.C. S.S, C. Cd,
0 0 0 1

3T6:3A44A55A% —




Kinematic Decoupling

 Cylindrical Manipulator with Spherical Wrist

Forward Kinematics A

d3

Ty
1’95

Ty I_

7
)

1 Vs,
A
ﬁ\“ﬁﬁi\

|\H—_
— N
C G -a
', WA \ LR
o o /Ll‘
T
4 s 1 ve

Forward Kinematic Solution

nX OX aX OX
n O d 0
T,="T,°T, = y y y y
nZ OZ aZ C)Z
‘0 0 0 1




Kinematic Decoupling
 Cylindrical Manipulator with Spherical Wrist

Inverse Kinematics

-
d'j Ik__ Alabeo (Roll) Cabeceo (Pitch)
-
_ﬂ — L
| '
/ I'x , 4[\,-"- i1 ’\
o 1><_
e
E}al o \_. \
Guitiada (Yaw) :

TCP (Tool Center Point)

In case of spherical wrist, the three axes of the wrist
joints intersect at the wrist center and hence the
motion of the final three links about these axes will not

»
- 91

k change the position of wrist center, and thus, the
position of the wrist center is a function of only
the first three joint variables.




Kinematic Decoupling
 Cylindrical Manipulator with Spherical Wrist

Inverse Position

-

ds 0, P,
Jll S I"f N _I_ Ir‘ﬁl‘\ I."f H‘-. I—
e | [ | I | |
/ L I"x_.f AR I"“uf
5"4 PT_ 495 ﬁ

The wrist axes z,, z,, and z intersect at P,

1y
~—— b (wrist center) and hence the origins s, and

S s, assigned by the DH-convention will always
x\\xﬁ& - 5 Y Y

be at the wrist center P,




Kinematic Decoupling
 Cylindrical Manipulator with Spherical Wrist

Inverse Position '
r_’fg {-- } 95
=]
e
% B 4
i
‘1 P

w

The origin of the tool frame (whose desired

| Y6, -coordinates are given by P,) is simply obtained by a

i

'%—k\_ translation of distance [ along z, from P,,.
x\\i‘ﬂ\




Kinematic Decoupling
 Cylindrical Manipulator with Spherical Wrist

Inverse Position

-

ds 0, P,

J/I 'ﬁﬂﬁ |'r-x'\" _I? oo I-"f- -H". [
L LT — T ~t—> Zg

/ x;.;"a.\\_’f -y M 5'._ o / -

- - p— = — p— —
:x\\“a’& i Puy R —lze y Iay Note: P, &z,

are given




Kinematic Decoupling
 Cylindrical Manipulator with Spherical Wrist

Inverse Orientation

dy
P=lp. b, b0 z=[a a af j;L
P p,—la, |
P.=| Py =R —lzg =| p, —1a,
P | p,—la, | df[g

Using the equation we may find the values of the
first three joint variables. This determines the

e h
orientation transformation °R, which depends only 7 01
on these first three joint variables 0,, d, and d,. h_k@
IR




Kinematic Decoupling
 Cylindrical Manipulator with Spherical Wrist

Inverse Orientation

A
r_’fg f-. I_} 95 Ph
74 — "\ —
¥ hé}—i 331 —_ 7T Tt Z
P, 6 n v

Now we can determine the orientation of the
end-eftector relative to the frame s x.y,z,

~ A
=l % from the expression
B N\ O _O 3 — . .
ﬁ\“ﬁxﬂ& R6 o R3 R6 — [n O a] NOte.‘. 9R¢ 1s glven
| Op-1 3 & °R, is calculated
R;’[n o a]="R; from- DOF arm
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Kinematic Decoupling

 Cylindrical Manipulator with Spherical Wrist

Inverse Kinematics: Summary

Step 1: Find 0,, d,, d, such that the wrist center P has
coordinates given by

I Pux | Py — Iax ]
Inverse
P = =R -lz,=| p,—la
w =] Puy n T e = Py ey Position
| Puz | | p,—la, | Kinematics
Step 2: Using the joint variables determined in Step 1,
evaluate °R,
Step 3: Find a set of Euler angles corresponding to the
rotation matrix I
0p-1 3 verse
R3 [n O a]: R6 Orientation
Kinematics

Step 4: Use 3Rsto find 0,, 0, O .
L5, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis 49
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Summary

« While forward kinematics determines the end-effector position
and orientation in terms of the joint variables, inverse
kinematics is concerned with finding the joint variables in
terms of the end-effector position and orientation.

« In general, inverse kinematics problem is more difficult than
the forward kinematics problem.

« Although the general problem of inverse kinematics is quite
difficult, it turns out that for manipulators having six joints,
with the last three joints intersecting at a point (such as the
Stanford Manipulator above), it is possible to decouple the
inverse kinematics problem into two simpler problems, known
respectively, as inverse position kinematics, and inverse
orientation kinematics.




